Key Findings

The number of new technology transfer licensing agreements ‘earned’ for every $1 billion of research expenditure has fallen from 115 to 109 between 2004 and 2006. However, the rate of return for licensing revenues per $1 million research expenditure has increased over the same period, from $34,806 to $40,837.

The efficiency of technology transfer outcomes varies across major regions. The UK produces the highest rate of invention disclosures, licensing agreements and new start-ups. The US produces the greatest rate of new patent grants, while Canada generates the most new patent applications. US institutions also generate the greatest technology licensing returns from research investments.

A common industry complaint about interactions with technology transfer offices is ‘a lack of understanding about customer needs’. Tech transfer executives are often viewed to better understand the merits of scientific over commercial solutions.

Generating a successful initial public offering (IPO) has become more difficult, putting increased pressure on associated royalty rates and spin-out terms. As venture capitalists become more conservative, moving new technologies from federal funding to proof-of-concept is increasingly challenging.

Use this report to...

- Identify the latest trends in technology transfer and compare the relative efficiencies of different regions with this report’s detailed survey data of technology transfer performances in the US, Canada and Europe.

- Compare the progress of leading peer-group universities and institutions by using this report’s league table assessment of leading technology transfer offices including healthcare patent data and overall technology transfer outcomes.

- Benchmark the best practices of leading technology transfer offices in the US and Europe by using in-depth case studies that examine successful strategies and approaches to office structuring.

- Assess the strategic recommendations and future predictions of technology transfer specialists based on insights from interviews with eleven experts from universities, hospitals, research institutions and independent companies, in addition to contributions from venture capital and pharmaceutical industry executives.
Explore issues including...

The funding gap. The difficulty of translating basic research to commercial licensing opportunities has never been greater, particularly as VCs and industry clients become more risk averse.

Defensive strategies. Moving technologies beyond basic research to proof of concept is expensive but has become a necessary step in the current technology transfer environment.

Cultural differences. Technology transfer offices are positioned between the academic and business worlds, and must balance the non-profit and for-profit worlds accordingly.

Integration vs independence. Recent trends, particularly in the UK, have seen a move towards establishing independent technology transfer offices in order to facilitate greater levels of professionalism and commercialism.

Discover...

- How do intellectual property rights differ by geography?
- How does the availability of potential collaborators and licensing partners differ by geography?
- How does the availability of human resources vary by geography?
- What are the alternative models for delivering technology transfer?
- What impact does each model of tech transfer delivery have upon commercial returns, operational effectiveness and culture/process?
- What are the key lessons from current technology transfer best-practices?
- How does the funding gap influence returns from technology transfer?
- What strategies can effectively combat the funding gap?
Chapter 2: Technology transfer outcome trends

The US
Technology transfer outcome trends have been analyzed for institutions in the US, Europe and Canada. Key outcomes include surrogate outcomes, such as invention disclosures, patent applications, patent grants and licensing agreements, and value-based outcomes, such as new start-ups and licensing income. The results of a successful sponsored research project usually come to the attention of the technology transfer office through presentation of a new invention disclosure. The disclosure is the first step of the intellectual property management process. The technology transfer office evaluates the invention disclosure through the critical tests for being novel, non-obvious and useful. This provides the first stage for initiating parallel intellectual property and licensing processes.

As shown in Figure 2.7, the average number of new invention disclosures received by technology transfer offices in the US increased from 67.2 in 1997 to 99.9 in 2006. Growth in invention disclosures has increased significantly over the past three years with a CAGR of 8.4% for the period 2003-2006.

New US patent applications usually correspond with the intellectual property management process for a single new invention disclosure, although two or more invention disclosures may be combined into a single new US patent application. A single invention disclosure can also result in more than one US patent application. There may also be a time lag whereby a US patent application is made in the year subsequent to the receipt of a new invention disclosure. The average number of new US patent applications by US technology offices has increased significantly over the past three years from 40.0 in 2003 to 61.5 in 2006.

However, as shown in Figure 2.8, the average number of new US patents granted to US technology transfer offices has fallen consistently over the last six years, from 20.9 in 2001 to 17.2 in 2006.
Table of Contents

CHAPTER 1: AN INTRODUCTION TO TECHNOLOGY TRANSFER
- Introduction
- Defining technology transfer
- A brief history
- Key issues
 - Geographical differences
 - Structuring the function
 - Bridging the funding gap

CHAPTER 2: TECHNOLOGY TRANSFER TRENDS
- Introduction
- Technology transfer funding trends
 - US
 - Europe
 - Canada
- Technology transfer outcome trends
 - US
 - Europe
 - Canada
- Technology transfer return on investment trends
 - US
 - Europe
 - Canada
- Technology transfer league tables
 - Healthcare measures
 - Technology transfer trends
 - Trends by research budget
 - Trends by age
 - Trends by office size
- Key trends
 - Geographical differences
 - Structuring the function
 - Bridging the funding gap

CHAPTER 3: GEOGRAPHICAL DIFFERENCES
- Introduction
- Country-level regulations
 - IP ownership
 - Technology transfer
- Institutional location
- Technology transfer in the US
 - IP ownership
- Technology transfer in Europe
 - IP ownership
- Technology transfer in the rest of the world
 - Japan
 - Canada
 - Australia
- Recommendations

CHAPTER 4: STRUCTURING THE FUNCTION
- Summary
- Introduction
- Structural issues
 - Commercial returns
 - Operational effectiveness
 - Culture and process
 - Independence
- In-house, non-profit model
 - **Case study:** University of California
 - **Case study:** K.U.Leuven
 - **Case study:** City of Hope
- Independent, non-profit model
 - **Case study:** Wisconsin Alumni Research Foundation
 - **Case study:** Arizona Technology Enterprises
 - **Case study:** Isis Innovation
- Independent, for-profit model
 - **Case study:** IP Group
 - **Case study:** Fusion IP
 - **Case study:** IPSO Ventures
- Recommendations

CHAPTER 5: BRIDGING THE FUNDING GAP
- Summary
- Introduction
- The funding gap
 - Technology transfer start-ups
- Bridging the gap
 - Translational research
 - University seed capital
 - Alternative venture capital
- Recommendations

LIST OF FIGURES
- The technology transfer process
- Average research expenditure for US Universities, Hospitals and Research Institutions, 1997-2006
- Average US Technology Transfer Office staffing levels, 1997-2006
- Distribution of European Technology Transfer Offices by staffing levels, 2006
- Average research expenditure for Canadian Universities, 1996-2006
- Canadian venture capital investments and fundraising, 2003-2006
- Average number of invention disclosures received by US Technology Transfer Offices, 1997-2006
- Average number of patents processed by US Technology Transfer Offices, 2001-2006
- Average number and value of US Technology Transfer licenses, 2004-2006
- US Technology Transfer licenses by exclusivity, 2006
Table of Contents

• US Technology Transfer licenses by size of partner, 2006
• Average change in European Technology Transfer outcomes, 2004-2006
• Average number of innovation disclosures and patents processed by Canadian Technology Transfer Offices, 1996-2006
• Average license revenue received by Canadian Technology Transfer Offices, 2000-2006
• Rate of return for invention disclosures received by US Technology Transfer Offices, 1997-2006
• Rate of return for patents processed by US Technology Transfer Offices, 2001-2006
• Rate of return for US Technology Transfer licenses, 2004-2006
• Rate of return for innovation disclosures and patents processed by Canadian Technology Transfer Offices, 1996-2006
• Rate of return for Canadian Technology Transfer licensing, 2000-2006
• Surrogate outcomes for the top 10 US university technology transfer offices ranked by research budget, 2006
• Surrogate outcomes for the top 10 US university technology transfer offices ranked by office size, 2006
• Technology transfer outcomes for the top 10 US university technology transfer offices ranked by research budget, 2006
• Technology transfer outcomes for the top 10 US university technology transfer offices ranked by office size, 2006
• Surrogate outcomes for the top 10 US university technology transfer offices ranked by year established, 2006
• Surrogate outcomes for the top 10 US university technology transfer offices ranked by year established, 2006
• Surrogate outcomes for the top 10 US university technology transfer offices ranked by research expenditure, 2006
• Top 10 hospital and research institution technology transfer offices by research expenditure, 2006
• Top 10 university technology transfer offices by research expenditure, 2006
• Surrogate outcomes for the top 10 US university technology transfer offices ranked by office size, 2006
• Surrogate outcomes for the top 10 US university technology transfer offices ranked by office size, 2006
• Surrogate outcomes for the top 10 US university technology transfer offices ranked by office size, 2006
• Surrogate outcomes for the top 10 US university technology transfer offices ranked by research expenditure, 2006
• Cross country technology transfer survey results
• University of California technology transfer summary, 2008
• K U Leuven technology transfer summary, 2008
• City of Hope technology transfer summary, 2008
• Wisconsin Alumni Research Foundation technology transfer summary, 2008
• Arizona Technology Enterprises technology transfer summary, 2008
• IP Group’s academic partners
• The technology transfer ‘funding gap’

LIST OF TABLES

• Milken Institute University Biotechnology Publication Rankings, 1998-2002
• Milken Institute University Biotech Patent Rankings, 2000-2004
• Milken Institute University Biotechnology Publication and Patent Rankings, 1998-2004
• Top 20 universities by healthcare US patent grants, 2006-07
• Top 10 hospital and research institutions by healthcare US patent grants, 2006-07
• Top 10 US university technology transfer offices by research expenditure, 2006
• Top 10 US hospital and research institution technology transfer offices by research expenditure, 2006
• Cross country technology transfer survey results
• University of California technology transfer summary, 2008
• K U Leuven technology transfer summary, 2008
• City of Hope technology transfer summary, 2008
• Wisconsin Alumni Research Foundation technology transfer summary, 2008
• Arizona Technology Enterprises technology transfer summary, 2008
• IP Group’s academic partners
• The technology transfer ‘funding gap’

LIST OF TABLES

• Milken Institute University Biotechnology Publication Rankings, 1998-2002
• Milken Institute University Biotech Patent Rankings, 2000-2004
• Milken Institute University Biotechnology Publication and Patent Rankings, 1998-2004
• Top 20 universities by healthcare US patent grants, 2006-07
• Top 10 hospital and research institutions by healthcare US patent grants, 2006-07
• Top 10 US university technology transfer offices by research expenditure, 2006
• Top 10 US hospital and research institution technology transfer offices by research expenditure, 2006
• Cross country technology transfer survey results
• University of California technology transfer summary, 2008
• K U Leuven technology transfer summary, 2008
• City of Hope technology transfer summary, 2008
• Wisconsin Alumni Research Foundation technology transfer summary, 2008
• Arizona Technology Enterprises technology transfer summary, 2008
• IP Group’s academic partners
• The technology transfer ‘funding gap’