Key Findings

Future improvements in drug discovery will include the modeling of a wider range of toxicities, such as hepatotoxicity, and formations of reactive metabolites that might lead to idiosyncratic toxicity. Developments in high-throughput technologies, systems biology and bioinformatics have also enabled virtual modeling for whole organs.

High-content screening is increasingly important for identifying toxicity endpoints in a drug discovery setting. The methods use automated microscopy with image analysis to measure the effects of compounds on cell health. Improvements are required in the cell types used and the number of toxicity endpoints that can be studied reliably.

Novel in vivo models are now available including zebrafish screens, which are suited for use at the lead optimization stage or earlier. Humanized rodent models, in which key enzymes responsible for metabolism have been replaced by their human counterparts, may also be suitable for use in candidate selection.

Pharmacometric modeling and simulation and novel study methods such as adaptive designs are increasingly being applied in drug development to make the most of the data collected and to guide the choice of dose for clinical application.

Use this report to...

- Assess key technologies for predicting drug safety in the earliest stages of discovery and clinical development with this report’s comprehensive analysis of emerging approaches across in silico, in vitro and in vivo preclinical technologies.
- Identify which companies are leading the field in safety prediction for new drugs, understand the strategic implementations for large pharma companies and examine the role of public-private consortia in solving key issues within this field of predictive safety.
- Discover the extent to which predictive safety technologies can provide potential cost savings and improvements in attrition rates and assess the challenges and risks associated with the implementation.
- Understand the latest strategies to improve safety evaluation in early clinical development with this report’s analysis of the latest approaches in exploratory and Phase I clinical trials.
Explore issues including...

The impact of failure: Declining productivity in the pharma industry has intensified the need to create innovative solutions to reduce new compound failures. The current likelihood of a project progressing from Phase 1 to approval is roughly 20%, although in some therapeutic areas this may be as low as 8%.

The importance of collaboration: Sharing information and expertise across companies can drive the field forward in a way that is impossible for these organizations individually. Biomarker data from some of the major consortia has been submitted to regulators, and this represents significant progress, most notably within the field of renal toxicity.

Better predictive animal models: Rodent and non-rodent models used in drug development are expensive and the results do not always translate well to the human situations. A survey carried out in 1999 reported a true positive concordance rate between animal and human data of 71% for rodent and non-rodent species (63% for non-rodents and 43% for rodents alone).

The need for early assessment of key clinical attributes: Exploratory trials are particularly useful for gaining early insight into human ADME characteristics including mass balance, metabolite and absolute bioavailability parameters that would not traditionally be collected until Phase 2 or later. These studies use microdoses and can explore more candidates at a lower cost than a traditional ‘First in Man’ study.

Discover...

- Which technologies are leading the way in predicting potential safety problems in the earliest stages of drug discovery and development as possible?
- What are the goals of public-private consortia in driving the discovery of methods and biomarkers and how much have they achieved to date?
- How can the data collected in early human clinical trials be improved to better inform decision-making about potentially safe candidates?
Chapter 6: Strategies to improve safety evaluation in early clinical development

Pharmacometrics – modeling and simulation to improve Phase 1 safety
Pharmacometrics, or Quantitative Clinical Pharmacology, is quantitative pharmaco-statistical analysis to answer clinical drug development questions, regulatory questions and influence decisions. It examines the variables that influence drug pharmacokinetics and pharmacodynamics, using disease, drug and safety models. The application of pharmacometrics in early clinical drug development has the potential to improve the quality of the data collected in Phase 1 trials.

Over the past few years, the use of pharmacometrics has grown rapidly due to increases in computing power, growing expertise among pharmaceutical scientists and an increase in the understanding of drug mechanisms and systems biology in general. Efforts to standardize ontology have also been important. Initiatives include the Gene Ontology Consortium, which addresses the need for consistent descriptions of gene products in different databases. With standards in place, researchers can be more certain that a search on a particular topic be comprehensive.

Before a drug reaches clinical development, disease-drug models can be used to elucidate mechanisms of action, potential determinants of drug safety and efficacy and the initial choice of dose for clinical trials. The sophisticated mathematical models take into account No Observed Adverse Effect Levels (NOAELs) from toxicology studies, which were traditionally used as the basis for choice of dose levels, as well as information on the sensitivity of receptors involved in drug efficacy and allometric scaling using data from relevant animal species (Figure 6.17). These models aim to provide more justifiable predictions of doses for use in humans, improving safety in early clinical trials, and can be used to support regulatory submissions including INDs and NDAs. They can also be used to predict the outcomes of clinical trials with various designs, inform patient selection and enable molecule selection from efficacy and safety perspectives.

The level of sophistication achieved by models varies according to therapeutic area. Models of HIV and bacterial infections are now well established and are able to predict clinical outcomes based on preclinical data. Other therapeutics areas, perhaps with more complex disease etiology, lag behind these areas and are the focus of current research.
Table of Contents

CHAPTER 1: INTRODUCTION
- Summary
- State of the industry
- Drug attrition
- Innovation in drug safety
- Report outline

CHAPTER 2: MODELING AND SIMULATION IN DRUG DISCOVERY
- Summary
- Introduction
- Molecular modeling
 - Structure-toxicity relationships
 - Epix Pharmaceuticals’ in silico discovery platform
 - Chemoinformatic methods
 - Collaborative projects
- Biosimulation
 - Virtual models of whole organs
- Conclusions

CHAPTER 3: NOVEL IN VITRO TECHNOLOGIES FOR PREDICTIVE SAFETY TESTING
- Summary
- Introduction
- Toxicogenomics and systems biology
 - Commercial platforms
- Cell-based assays
- Stem cells
- Conclusions

CHAPTER 4: NOVEL IN VIVO METHODS IN FOR NON-CLINICAL SAFETY ASSESSMENT
- Summary
- Introduction
- Zebrafish
- Whole animal imaging and microscopy
- Humanized rodent models
- Conclusions

CHAPTER 5: CURRENT INITIATIVES IN PRECLINICAL DRUG SAFETY
- Summary
- Introduction
- The Predictive Safety Testing Consortium
- The International Life Sciences – Health and Environmental Sciences Institute
- The InnoMed PredTox project
- The Innovative Medicines Initiative
- Additional consortia
 - The Chemical Effects in Biological Systems Database
 - The Japanese Toxicogenomics Project
 - Liver Toxicity Biomarker Study
 - Consortium for Metabonomic Toxicology
 - Other European funded initiatives
- ACuteTox
- Reprotec
- Predictomics
- CarcinoGenomics
- Conclusions

CHAPTER 6: STRATEGIES TO IMPROVE SAFETY EVALUATION IN EARLY CLINICAL DEVELOPMENT
- Summary
- Introduction
- Exploratory clinical trials
 - Other applications of AMS
 - Industry uptake
 - Regulatory status
- The future for AMS-based studies
- Technologies
- Linking pharmacology data to microdose studies
- Improving safety evaluation in Phase 1
 - Biomarkers in Phase 1 clinical trials
 - Pharmacogenomics and rare, idiosyncratic adverse events
 - Pharmacometrics – modeling and simulation to improve Phase 1 safety
 - Optimizing early clinical trial design
 - QT in Phase 1
 - The Thorough QT Study
 - Timing of the TQT study
 - Intensive QT studies in early Phase 1
 - Costs and decision making
- Conclusions

CHAPTER 7: CHALLENGES AND COST SAVING OPPORTUNITIES
- Summary
- Introduction
- Implementation of new technologies
- New technologies, new risks
- Qualifying biomarkers
- Translational medicine
- ‘Fail early, fail often’
- Conclusions

LIST OF FIGURES
- Pharma industry productivity decline (1995-2007)
- Reasons for drug attrition
- The place of innovative safety evaluation strategies in drug discovery and development
Table of Contents

- Serious adverse events: research priorities
- In silico methods contribute to the earliest stages of drug discovery
- The Safety Intelligence Program from BioWisdom
- Examples of assertions in the Safety Intelligence Program from BioWisdom
- Novel in vitro methods and their use in drug discovery and development
- A typical toxicogenomics workflow in the pharma industry
- Novel in vivo methods and their use in drug discovery and development
- Whole body microPET images through a rat showing 18F-FDG distribution
- Study design and investigations used in the InnoMed PredTox project
- The ‘learn and confirm’ model of drug development
- The place of innovative technologies in early clinical safety assessment
- Comparison of midazolam pharmacokinetics at microdose and therapeutic dose levels in the CREAM study
- Proposed decision tree for integration of pharmacogenetic studies in early drug development
- Information utilized in model-based drug development
- Key attributes of a thorough QT study
- Success rate improvements from increasing investment in technologies for early safety prediction

LIST OF TABLES

- Failure rates at each stage of clinical drug development
- Drugs withdrawn from the market in the US between 1998 and April 2008
- Examples of companies providing platforms for toxicogenomics
- Examples of companies offering integrated software suites for the analysis of toxicogenomic data
- Examples of contract laboratories offering HCA cytotoxicity screening
- Examples of companies offering stem cells for toxicity testing
- Advantages and disadvantages of zebrafish for toxicity screening
- Companies offering zebrafish toxicity screening products and services
- Advantages of molecular imaging of whole animals for preclinical studies
- Manufacturers of molecular imaging equipment and probes
- Companies developing transgenic models for ADMET testing
- Biomarker candidates identified by the InnoMed PredTox project
- Companies offering AMS services
- Advantages and disadvantages of AMS-based microdosing studies
- Advantages and disadvantages of using AMS for mass balance and absolute bioavailability studies
- Core list of validated genomic biomarkers involved in ADME
- Examples of valid genomic biomarkers in drug labels
- Pharmacometric consultancies
- Definitions and examples of safety biomarkers with different levels of qualification
- Success rate improvements from increasing investment in technologies for early safety prediction
- Success rate improvements from increasing investment in technologies for early safety prediction